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ABSTRACT: Single-Doppler radar data are often missing in important regions of a severe storm due to low return power,

low signal-to-noise ratio, ground clutter associated with normal and anomalous propagation, and missing radials associated

with partial or total beam blockage.Missing data impact the ability ofWSR-88Dalgorithms to detect severe weather. To aid

the algorithms, we develop a variational technique that fills in Doppler velocity data voids smoothly by minimizingDoppler

velocity gradients while not modifying good data. This method provides estimates of the analyzed variable in data voids

without creating extrema. Actual single-Doppler radar data of four tornadoes are used to demonstrate the variational

algorithm. In two cases, data are missing in the original data, and in the other two, data are voided artificially. The filled-in

data match the voided data well in smoothly varying Doppler velocity fields. Near singularities such as tornadic vortex

signatures, the match is poor as anticipated. The algorithm does not create any velocity peaks in the former data voids, thus

preventing false triggering of tornado warnings. Doppler circulation is used herein as a far-field tornado detection and

advance-warning parameter. In almost all cases, the measured circulation is quite insensitive to the data that have been

voided and then filled. The tornado threat is still apparent.
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1. Introduction

Doppler radar data are often lost in significant regions of a

severe storm because of low return power or low signal-to-noise

ratio. Missing radar data or data voids are a pervasive problem

for diagnostic data analysts who employ quantitative research

methods. The sources of data voids are ground clutter associ-

ated with normal and anomalous propagation (black speckles,

Figs. 1a–d, for example), missing radials from radar (often

associated with partial or total beam blockage), (Figs. 1e,f),

and other causes (Serafin and Wilson 2000). The blockage is

typically caused by nearby obstacles (terrain, buildings, and

wind farms). The analysts rely on a variety of ad hoc algorithms

that attempt to ‘‘fix’’ the missing data by discarding incomplete

cases or by filling in (or ‘‘imputing’’) the data voids. These

attempts may be prone to bias that may affect the represen-

tativeness of the result. The use of a gap-filling procedure to

provide more complete data coverage over a computational

domain can benefit detection algorithms, rainfall maps, and

wind field analyses.

Our main motivation in this paper is to improve the per-

formance of radar-based tornado-warning algorithms. Missing

data present difficulties for severe-weather algorithms. Although

filling in null values smoothly will not vastly improve detection

of vortices, a bad filling algorithm can increase false alarms by

introducing spurious maxima of shear or decrease probability

of detection by smoothing out singularities (Nuss and Titley

1994, p. 1615; Mahalik et al. 2019). Ideally an algorithm for

filling in gaps in gridded data should preserve good data and

not insert extrema that could mislead the algorithm.

There are numerous ways to interpolate data. Franke (1982)

reviews and evaluates schemes for scattered data such as

the multiquadric method (Hardy 1971; Nuss and Titley 1994).

Franke defines a global method as one for which the inter-

polated value at a point is dependent on all data points and

addition or deletion of a data point propagates throughout

the domain of definition. Global methods are not well suited

to radar applications where the domain is often a user-

defined region of a storm. Many of the schemes assessed by

Franke are global. Moreover, the schemes are not required to

reproduce the data exactly at the scattered observation

points. Some methods have at least one free parameter that

has to be chosen judiciously. A bad choice of a parameter can

lead to instability (Isom et al. 2009, p. 901). Other methods

make restrictive statistical assumptions about the data (e.g.,

kriging). Typically, these methods assume that the data are

stationary, isotropic, and/or fit a normal distribution. We

conclude that schemes for scattered data are not really ap-

plicable to radar data, which is ordered on a grid with some

points lacking data.

We now consider local methods for gridded data that are

more appropriate for use with radar algorithms. In this context,

Mahalik et al. (2019) used a least squares-plane method. The

least squares fit is to data defined on local neighborhoods (33 3

or larger subgrids in their study). Their median filter modifies

the data prior to their regression analysis. Interpolated values

would not match gridded observation values even if the data

were unfiltered. Methods such as bicubic spline interpolation

are more advantageous as the interpolant passes through the

good data points. The fact that the extrema of the interpolant

may lie outside the range of the data is an undesirable feature

for our specific application. We next discuss the properties that
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we believe a gap-filling technique should have for algorithms

that detect tornadoes and mesocyclones.

Unlike image processing where outliers are regarded as bad

pixels, the outliers in vortex detection are important informa-

tion rather than unwanted noise. No method for filling in

missing data, however simple or complex, will perform well

near a singularity. A tornado is almost always unresolved by

the grid and appears as a singularity. A tornadic vortex sig-

nature (TVS; Brown et al. 1978) can indicate the presence of a

tornado. A large value of Doppler circulation (Davies-Jones

et al. 2020, hereafter DJ20) reveals the possibility of a large

violent tornado.

For our purposes we need a gap-filling algorithm that applies

to gridded data of a scalar field (viz., Doppler velocity) on a

specified 2D domain with some gaps in the data (i.e., data is

missing at some assortments of data points). We wish to fill in

the data by minimizing a cost function, namely, the mean

squared magnitude of the gradient of the scalar, over each data

void. Our other requirements are that (i) good data are not

filtered or modified, (ii) maxima or minima are not introduced

into the field, (iii) gaps are filled using only the nearest sur-

rounding good data so the method is local, (iv) there are no

free parameters that have to be chosen judiciously for each

application, and (v) the algorithm is stable and works without

fail. Undoubtedly other researchers with different needs will

prefer different methods.

These requirements eliminate methods that (i) find best fits

of mathematical functions to scattered data (Hardy 1971),

(ii) obtain best least squares plane fits that do not pass through

the data points (Mahalik et al. 2019), (iii) bicubic splines that fit

FIG. 1. DDCWSR-88D scans of (a) ground-relative, meanDoppler velocity (Vr, m s21) and (b) radar reflectivity

(Z, dBZ) of the tornadic storm at the 0.58 launch angle at;2345 UTC 24 May 2016. Oklahoma City (TLX) WSR-

88D scans of (c) ground-relative, meanDoppler velocity and (d) radar reflectivity of a stormwith anEF4 tornado as

collected at 0.58 launch scan at 2302 UTC 19 May 2013. A dotted curve depicts damage path of the Lake

Thunderbird–Bethel Acres–Shawnee tornado. Norman (OUN) WSR-88D scans of (e) ground-relative, mean

Doppler velocity and (f) radar reflectivity of a significant mesocyclone signature in association with a hook echo at

an approximate range of 36 km and azimuth of 2628, as collected at the 0.58 launch angle at 0027 UTC 6 May 2015.

The superresolution data were collected with 0.25-km range and 0.58-azimuth intervals. Data are missing along five

radials from 260.228 to 262.228 and along five radials from 263.228 to 265.228.
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the data but with possible overshoots, (iv) median-filtering

techniques used to fix bad pixels and produce pleasing images,

(v) statistical methods that minimize some statistical measure

while making assumptions about the statistical distribution of

the data, and (vi) methods that have free parameters.

A variational method does meet all our requirements.

Variational analysis provides the necessary Euler–Lagrange

equation for minimizing the cost function in the data voids

(along with the natural boundary conditions if the void has

points on the domain boundary). The solution of the varia-

tional problem exists and is unique. The variational method is

the one that minimizes gradients across data voids. There is no

need to collect extensive statistics on numerous case studies

and patterns of missing data to demonstrate that this is the

preferred method for our specifications. Owing to the maxi-

mum principle (Weinberger 1965, 55–57), the algorithm will

not place a local extremum in a data void that is fully within the

interior of the domain. The method produces plots of Doppler

velocity that vary smoothly across data voids without insertion

of false spikes and peaks.More complex interpolationmethods

could introduce false extrema that a vortex-detection algo-

rithm could latch on to.

The data-filling algorithm developed in the present study is

similar to one of the procedures examined by Ellis (1997).

However, while Ellis worked with numerical model data on a

Cartesian grid, we consider actual radar data on a radar grid.

Ellis tested gap-filling algorithms based on the Cartesian form

of two-dimensional (2D) and three-dimensional (3D) Laplace

and biharmonic equations so that Doppler radar data could be

used to initialize regional scale models. Laplace’s equation

arose from the minimization of the (squared) first spatial de-

rivatives of the field being void filled, while the biharmonic

equation arose from the minimization of the (squared) second

spatial derivatives. Ellis performed gap-filling experiments in

an observing system simulation experiment (OSSE) frame-

work using numerically simulated supercell data. To simulate

radar data, themodel output was assumed to be ‘‘missing data’’

if the rainwater mixing ratio value was below a specified

threshold at a particular grid point. This was accomplished by

flagging the grid point as one to be data filled. In tests with

numerically simulated Cartesian velocity data, it was deter-

mined that the Laplace equation approach yielded better re-

sults than the biharmonic equation approach. Moreover, the

2D procedure was notably better than the 3D procedure.

This paper is organized as follows. Section 2 describes a

variational method (Hildebrand 1965) to fill in data voids on

surfaces of constant launch angle (Davies-Jones et al. 2019,

hereafter DJ19) with values that minimize gradients of a scalar

such as Doppler velocity. Several illustrative examples are

provided in section 3. Section 4 uses actual single-Doppler data

of four different tornadoes to explore the utility of the algo-

rithm. Conclusions and future work follow in section 5.

2. Description of the variational methodology

Our variational method fills in voids in gridded data of a

general scalar field with grid values that minimize the mean

square magnitude of the gradient in each void. The method

works for all configurations of missing data. It does not intro-

duce local extrema into the field. To develop and test the

performance of the method in a radar coordinate system, we

followed the DJ19 approach. Under standard refraction con-

ditions, the ray curvature is negligible, and we use the mea-

surable radar coordinates (r, a, b) centered on the radar where

r is the slant range (arclength along a stationary ray), a is the

launch angle (elevation angle of the radar ray at the radar

antenna), and b is the azimuth angle measured clockwise from

due north. For straight rays, the surfaces of constant a are

conical for a 6¼ 0 and the surface a 5 0 is the plane tangent

to the (assumed spherical) Earth at the radar. The gradient

of a scalar field S on a particular surface of constant elevation

angle ao is

=
a
S5

›S

›r
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1

r cosa
o

›S

›b
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where r̂ and b̂ are, respectively, unit vectors along the ray and

perpendicular to the ray in the azimuthal direction. We seek
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where the quantity in square brackets is themagnitude squared
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where we have used integration by parts. The variation dS is

zero where the data are good and is arbitrary where the data

are missing. In the data voids (where dS 6¼ 0), the minimizing

function S(r, b) must satisfy the Euler–Lagrange equation:

›2S

›r2
1
1

r
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1

1

r2 cos2a
o

›2S

›b2
5 0 , (4)

and the natural boundary conditions

›S

›r
5 0 at r5 r

1
, r

I
and

›S

›b
5 0 at b5b

1
,b

K
(5)
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if S is missing at a domain boundary point. For the terms

in (4) and (5) we use the following finite-difference ex-

pressions obtained from Taylor-series expansion to sec-

ond order:

�
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where i is the index in the range direction and k is the index

in the azimuth direction. We have used the natural boundary

conditions in the formulas at boundary points. Note that the grid

spacing in the radial direction Dr5 ri11 2 ri is constant, but the

spacing in the azimuthal direction may vary to accommodate

phased-array radar. Inserting (6)–(8) into (4) results in a finite-

difference version of the Euler–Lagrange equation, which re-

lates the scalar at an interior grid point (i, k) to the scalar at the

two adjacent points on the same radial (i 2 1, k) and (i 1 1, k),

and the two adjacent points (i, k2 1,) and (i, k1 1) on the same

slant-range circle. The same applies for boundary and corner

points except neighboring points that lie outside the domain

are eliminated. The discrete Euler–Lagrange equation is

D
i
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B
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12l
i
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,
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: (10)

FIG. 2. Superimposition of Doppler velocity contours on the field

of actual mean Doppler velocities (m s21) at 3.88 launch angle for

theUnion City tornado at 1546 CST 24May 1973. Doppler velocity

contours are drawn at intervals of 5m s21. Green (red) contours

represent flow toward (away from) the radar site. Black contours

represent flow perpendicular to the radar viewing direction.

FIG. 3. Histogram of Doppler velocity data in Fig. 2. The values

m, s, and N are the mean, standard deviation, and number of data

points, respectively.
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Prior to filling in data voids, we pick a domain defined by two

range circles and two radials on a particular surface of constant

launch angle. Since the algorithmminimizes the gradient of the

scalar, the domain, however, should be chosen so that it

encompasses a storm or mesocyclone with little wasted area

outside the echo. The algorithm does not discriminate between

missing values owing to poor data quality and those due to low

reflectivity. WSR-88D algorithms such as tornado detection

algorithm (Mitchell et al. 1998) and mesocyclone detection

algorithm (Stumpf et al. 1998; Mahalik et al. 2019) can use the

output from our algorithm.

The procedure for filling in data voids is as follows. We flag

the grid points with missing data. At grid points with data, the

scalar value is the observed one. For efficiency we use two

preliminary nonessential steps. At step 1 we look for isolated

missing data points (i.e., those points whose neighbors all

have good data). At each of these points, the scalar is calcu-

lated from the discrete Euler–Lagrange equation in (9) and

the point is then unflagged (i.e., its flag is removed) because

the data void has been filled. At step 2 we look for two-point

voids (data missing at just two contiguous points). The Euler–

Lagrange equation provides two simultaneous equations,

which are solved for the scalar at the two points, which are

FIG. 4. Illustrative examples 1–4 are drawn from the example shown in Fig. 2. Data are missing only at the pink

points. Values at the neighboring green points are used to fill in values at the pink points. Values at the white points

surrounding green points have no effect on the filled-in values at the pink points.
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then unflagged. Finally, at step 3, all the larger data-void re-

gions are filled simultaneously by solving a system of equa-

tions consisting of (9) at the remaining flagged points and Si, k
equal to its observed or previously filled-in value at the un-

flagged points. At the points that are still flagged, S is set

initially equal to 0m s21. The system is solved for the un-

known values of S at the flagged points using a red-black re-

laxation method (e.g., Press et al. 1996). Each grid point is

portrayed with a red or black dot according to whether i1 k is

odd or even. The resulting grid is a checkerboard pattern with

red points having only black neighbors and vice versa. We

update the value at a red flagged point first by computing a

new value that makes the residual there vanish. This increases

the residuals at the black neighboring flagged points, but not

at any other red points. We can therefore perform updates at

all the red flagged points simultaneously. We then use the

updated values at the red points to update the values at all the

black-flagged points.We repeat the process until all the residuals

are below a specified tolerance. The relaxation method always

converges, albeit slowly (Thompson 1961, p. 94; Haltiner and

Williams 1980, p. 158). The method converges in fewer itera-

tions if overrelaxation is used. Thus, the new values are com-

puted using a larger correction than needed tomake the residual

vanish (Haltiner and Williams 1980, p. 159). The optimum

overrelaxation parameter is greater than 1 by definition and

just below 2 for data voids with a very large number of missing

data points.We use an overrelaxation coefficient of 1.3 because

the sizes of the data voids are usually small.

FIG. 5. As in Fig. 4, but illustrating how missing data are filled in at boundary points. Example 5 is for a

boundary point that is not at a corner of the domain. Setting the yellow-circled value equal to the green-

circled one ensures that the natural boundary condition is satisfied at the pink boundary point. Example 6

demonstrates how a missing datum is filled in at a corner point of the domain. The natural boundary con-

dition is satisfied at the pink corner point when the circled values are equal and the boxed values are equal.

In example 7, the data along the radial (shaded pink) through the peak value in the original field (36 in

Fig. 2) are assumed missing. The natural boundary condition is satisfied at the pink boundary points when

the circled values are equal and the boxed values are equal. The variables x, y, z, a, b, along the radial in

example 7 are the fill values to be determined. The values obtained by the variational algorithm are shown in

example 7 solution.
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The algorithm is extremely stable. Even under the extreme

conditions of missing data at all grid points but one, it will find a

solution. This solution (a constant field equal to the one good

data value) is obviously trivial, but the point is that the algo-

rithm does not fail.

Note that the method is local rather than global. Even

though the gaps are filled simultaneously, they are filled

independently of one another. An advantage of the method

is that the filling of an interior gap is independent of

domain choice.

We justify our choice of cost function as follows. First con-

sider the problem of finding the electrostatic potential S

inside a closed curve when it is given on the curve and the in-

terior is devoid of positive and negative electric charges. The

potential is the solution of Laplace’s equation subject to

Dirichlet conditions (Farlow 1993, 245–263). (If there were a

charge distribution in the interior, the equation would be a

Poisson one instead.) The solution is the one that minimizes

the squared magnitude of the potential gradient (the cost

function) over the region. Conversely, minimization of this

cost function results in an Euler–Lagrange equation that is

Laplace’s equation (Hildebrand 1965, 138–139). In the absence

of an interior charge distribution, it follows from the maximum

principle (Weinberger 1965, 55–57) that extreme values of

the potential must occur on the boundary curve, not inside

the curve.

Now consider the problem of minimizing the same cost

function for a Doppler velocity field (the potential in this case)

with a small data void that is not extremely close to the radar.

We can neglect the divergence of the radials and the curvature

of the surface of constant launch angle. Then the geometry of

the region containing the data void is planar to a good ap-

proximation. The problem becomes analogous to the electro-

static one so the Euler–Lagrange equation for minimizing

j=aSj2 over a planar data void is Laplace’s equation =2
aS5 0.

Thus, the main advantages of our choice of cost function for

our application are (i) the filled-in values are determined solely

by values at the boundary of the void, and (ii) there are no

interior sources and sinks (charges) of Doppler velocity so

extreme values do not occur in the interior of the void.

3. Illustrative examples using a simplified version of the
variational procedure

This section describes a simplified version of the variational

algorithm to illustrate the basic ideas behind the method. The

illustrative examples concern the Doppler radar signature of a

tornado. Initially, we make a few oversimplifications to make

calculations straightforward. In section 4, we outline how the

algorithm works in radar applications.

We begin with the original Doppler velocity field S 5 Vr

(Fig. 2). This is actually a part of the Doppler velocity field of

the Union City, Oklahoma, tornadic vortex signature (TVS)

observed on the Norman Doppler radar at a height of about

3.5 kmAGL (Brown et al. 1978). The deducedmean rotational

velocity of the TVS is 28.5m s21 5 [36 2 (221)]/2m s21. This

velocity is calculated as Vrot 5DV/2, where DV 5 Vob 2 Vib is

the velocity difference between the outbound (ob, positive)

and inbound (ib, negative) Doppler velocity peaks in the

characteristic velocity couplet (e.g., Wood and Brown 1997).

To keep the calculations as simple as possible, we will as-

sume that (i) the geometry is Cartesian, (ii) the grid spacing

is the same in the radial and azimuthal directions, and (iii)

the domain consists just of the grid points shown in Fig. 2.

With these simplifications, the Euler–Lagrange equation re-

duces to Laplace’s equation and the centered second ordered

finite difference of the Laplacian becomes the formula for bi-

linear interpolation. For voids with points on the domain

boundary, the natural boundary conditions are still needed for

closure of the equations.

Figure 3 provides a histogram of Doppler velocity data

for this case. The standard deviation s is large and the bi-

modal frequency distribution is not a good fit to a normal

FIG. 6. (a) The B scan of the field of actual, storm-relative mean

Doppler velocities (m s21) at 3.88 launch angle for the Union

City TVS at 1546 CST 24 May 1973. The domain here has been

expanded from the blue boxed domain shown in Fig. 2. The

value of 999.0 represents a missing data parameter. Each

missing datum is indicated with a flag. (b) The mean Doppler

velocity field with two filled-in Doppler velocity values (white

numbers). Black Doppler velocity values are unmodified. The

Doppler circulations and mean convergences are calculated

from the observed Doppler velocity field around the yellow

dotted circles (1.5 and 2.5 km in radius) centered on the TVS

axis (yellow heavy dot at 51 km range and 292.58 azimuth) in the

3.88 surface of constant launch angle. Ranges (km) on the left

side and azimuths (8) on the top are from Norman Doppler ra-

dar. The horizontal color label bar provides the contour levels

for Doppler velocity. Black ‘‘ND’’ represents no data (missing

data); purple ‘‘RF’’ represents a range-folded value.
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distribution or any other standard probability distribution

function. The most significant data for tornado warning

purposes, the peak values, are two large standard deviations

from the mean and are outliers arising not from chance but

from the unresolved vortex. Hence, a statistical approach

to data filling based on an assumed standard distribution

is not useful. In contrast, our algorithm is independent of

statistical assumption such as normality, stationarity, and

isotropy.

We create data voids by deleting the originalVr data at some

points. We then use the algorithm to fill in the missing data

smoothly without altering any of the good data. To fit the

definition of missing data, we should lose all memory of the

deleted data because in real-life environments there is no way

of validating filled-in data. However, in the current experi-

mental framework, we compare the original prior-to-deleted

data with filled-in fields to reveal the consequences of the

variational procedure. With the Cartesian square grid as used

in this section, the condition that j=Vrj is a minimum in each

region devoid of data is that the Laplacian, =2Vr, equals zero in

each data void (Hildebrand 1965, p. 138) (i.e., at each grid point

with missing data). The Laplacian is evaluated using a five-

point stencil. It is given by

=2V
r
5
(V

i11,k
1V

i,k11
1V

i21,k
1V

i,k21
2 4V

i,k
)

D2
, (15)

where the subscript r inVr is dropped for convenience, and D is

the constant grid spacing. Thus, the condition that =2Vr 5 0 at

the i, k grid point is satisfied if

4V
i,k
’V

i11,k
1V

i,k11
1V

i21,k
1V

i,k21
. (16)

In other words, the filled-in value at missing data point (Vi,k) is

equal to the average of values at the four nearest-neighbor

points (i.e., Vi11,k, Vi, k11, Vi21, k, and Vi,k21). At boundary

points with missing data (as will be shown subsequently), we

need to satisfy the natural boundary condition that the normal

gradient of V vanishes (i.e., ›V/›n 5 0). We do this through

the device of adding adjacent exterior points. Note that by

the maximum principle (Duff and Naylor 1966, p. 135), the

FIG. 7. As in Fig. 6, but (a) data along two radials passing through

the mean Doppler velocity peaks at 2928 and 2938 azimuths have

been voided (black pixels) and (b) the filled-in Doppler velocities

(white numbers) along these two radials.

FIG. 8. As in Fig. 7, but the data along the 2918 and 2948 radials are
voided instead.
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maximum and minimum values in a data void are attained

on its boundary. Therefore, the data filling does not intro-

duce local maxima or minima into the field. In particular, the

algorithm cannot reintroduce local maxima or minima that

have been discarded from the original field and it cannot

insert local maxima or minima that are not present in the

original field. Other methods such as cubic spline interpo-

lation can ‘‘overshoot’’ and amplify extrema. This is unde-

sirable because we do not want interpolated (rather than

actual) data to trigger, for example, the tornado detection

algorithm (TDA; Mitchell et al. 1998) into false alarms. Too

many false alarms lead to the public not taking tornado

warnings seriously.

In our presentation of examples 1–7 (Figs. 4 and 5), we

use the convention that locations with missing data are

shaded pink. The interior points with good data that are used

to fill in missing data at the pink points are green points, the

fake exterior points used to apply the natural boundary con-

dition where necessary are yellow points, and the points that

have no impact on the data filling are white points. We use

seven illustrative examples (1–7) to show how the simple ver-

sion of the variational algorithm works (Figs. 4 and 5).

a. Example 1

In the first example, we assume that the positive peak ve-

locity in the TVS, the value 36 in Fig. 2, is missing (pink point

in Fig. 4). The algorithm has no knowledge of the missing

peak in the original field and so the algorithm cannot recreate

it. The Laplacian is zero at the pink point so x, the filled-in

value there, equals the average of the values at the four green

FIG. 9. KOUN scans of (a) ground-relative, mean Doppler velocity (Vr, m s21); (b) radar reflectivity (Z, dBZ);

and (c) spectrum width (sy, m s21) of the El Reno tornado as collected at 0.978 launch angle at 2311 UTC 31 May

2013. The center of the significant TVS is located at 56.75 km and 295.08 (black star). The TVS’s positive and

negative Doppler velocity peaks, separated by about 0.88, are, respectively,114 and258m s21. In (a), the Doppler

velocity is contoured at intervals of 10m s21. The label bars indicate the Vr, sy, and Z contours with ND (black

pixel) denoting no data (missing data) andRF (purple) range folding. The superresolution data have 0.25-km range

and 0.58-azimuth intervals. The labels on the left and top sides of the panels are ranges (km) and azimuths (8) from
the KOUN radar.
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nearest-neighbor points (Fig. 4) with values at the white points

having no impact. Thus, x is equal to (81 181 112 21)/45 4.

It is much different from the voided value 36, but that should be

expected near a singularity. According to photogrammetric

measurements (Golden and Purcell 1978), there is in real life a

tornado with peak toward and away velocities of 80m s21

separated by roughly half the distance between grid points. A

TVS is still evident in Fig. 2, but the deduced mean rotational

velocity, 19m s21, is reduced and the peaks are further apart

than in the original data.

b. Example 2

In example 2 (Fig. 4), we void the negative peak velocity of

the TVS (i.e., the value 221 in Fig. 2) instead of the positive

one. In this case, the filled-in value is20.255 (2161 362112
10)/4. In the filled-in field, there is still a TVS with the deduced

mean rotational velocity of 23m s21.

c. Example 3

We now investigate the case where both the negative and

positive peak velocities of the TVS are missing (the pink data

void in example 3 of Fig. 4). Let x and y be the filled-in values

for the left and right pink points, respectively. These depend

mutually on each other and six surrounding green points. The

conditions that=2V5 0 at the pink points are 4x52162 102
11 1 y and 4y 5 8 1 18 1 11 1 x. The solutions of these two

simultaneous equations are x527.4 and y5 7.4. As expected,

the velocity peaks are further apart than in the original data.

FIG. 10. (a) Missing Doppler velocity data created randomly by voiding data (superimposed by black pixels)

based on the f value of 0.2. (b) Filled-in Doppler velocity data provided by the algorithm. White numbers inside

black pixels in (a) represent actual nonmissing data for comparison to filled-in Doppler velocity values (white

numbers) in (b). (c) Doppler velocity differences [actual Doppler velocity values in (a) minus filled-in Doppler

velocity values in (b)]. The difference scale is indicated at bottom of (c). (d) Contours of the filled-in Doppler

velocity field. The Vr scale is indicated inside the label bar in (d).

1524 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 38

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/08/21 07:06 PM UTC



Thus, the filled-in field has a mesocyclone signature with a

deduced mean rotational velocity of 14 m s21 instead of a

TVS. Since the good data outside the signature is unmodi-

fied, the large far-field circulation value, which indicates

the possible or potential presence of a tornado (DJ20) is

unaffected.

d. Example 4

In example 4 of Fig. 4 we void the data values 210 to the

immediate left of the left peak and the value 18 to the im-

mediate right of the right peak in Fig. 2. The data voids are

separated far enough that the equations for the unknowns x

and y are uncoupled and the voids can be filled in individ-

ually. Thus, x 5 (210 2 21 2 8 2 8)/4 5 211.75 and y 5
(13 1 11 1 16 1 36)/4 5 19 depend on the leftmost and

rightmost disjoint clusters of four green points, respectively.

In this case filled-in values are close to the deleted values

(Fig. 2). This is because the data voids are in velocity gra-

dients that are varying slowly.

e. Example 5

Example 5 (Fig. 5) shows how to fill in missing data at an

isolated pink point that is on a boundary but not at a corner.

In this case, we have voided the value 7 on the left side of the

domain (Fig. 2). We use the natural boundary condition by

inserting the exterior yellow point as shown and assigning

it a value of V such that the normal gradient of V vanishes at

the pink point. Giving the unknown at the yellow point, the

circled value at the interior green point across the boundary

(viz., 28) makes ›V/›n 5 0. The filled-in value at the pink

boundary point is thus 24.5 5 (28 2 8 1 6 2 8)/4. In this

case, the filled-in value 24.5 is not close to the discarded

value 7 because the normal gradient of V at the pink point is

significant (Fig. 2) and not zero as specified by the natural

boundary condition.

f. Example 6

Example 6 (Fig. 5) illustrates how to fill in missing data at an

isolated pink point at a corner point of the domain. Here, two

exterior points are needed so that=V at the pink point vanishes

in both the radial and azimuthal directions. The exterior points

are assigned the values of the associated adjacent interior

points as shown. Hence, the filled-in value at the pink corner

point is 10.5 5 (10 1 11 1 10 1 11)/4.

g. Example 7

The final example demonstrates the filling-in of a missing

radial, in particular, the pink radial that passes through the

peak value (36) of the original field (Fig. 2). We need two

exterior yellow points as shown in example 7 of Fig. 5. To

satisfy the natural boundary condition (›V/›n 5 0) at the

endpoints of the radial, the boxed values must be the same

and likewise for the circled values. We find the filled-in values

shown at the pink points as the solutions of a system of five

simultaneous equations (x, y, z, a, and b), namely, the finite-

difference version of Laplace’s equation at the five pink

points. Applying this rule at pink points in succession starting

at either top or bottom of the domain, the following five

equations are given by

4x5 y1 111 y2 11,

4y5 x1 z1 132 16,

FIG. 11. Frequency histogram of the Doppler velocity differ-

ences (m s21) (actual Doppler velocity minus filled-in Doppler

velocity) in 1 m s21 velocity bins for the El Reno tornado as

collected at the 0.978 launch angle at 2311 UTC 31 May 2013.

The values m, s, RMSE, and N are the mean, standard devia-

tion, root-mean-square error, and total number of data points,

respectively.

FIG. 12. Scatterplots (red circles) of actual vs filled-in Doppler

velocity data for the El Reno tornado as collected at the 0.978
launch angle at 2311 UTC 31 May 2013. R2 is the correlation

coefficient squared. The gray diagonal is the straight line

through the origin of slope 1.0. The black line is the linear re-

gression line.
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4z5 y1 181 a2 21,

4a5 z1 161 b2 11, and

4b5 a1 121 a1 1:

As a result, the solutions of the five simultaneous equations,

as shown in example 7 and its solution, are x ’ 20.49,

y ’ 20.98, z ’ 20.44, a ’ 2.23, and b ’ 4.37. These equa-

tions depend on the good, unmodified data at the green

points along the neighboring radials but not on the data

at the white points. As in example 1, there is a TVS with

a deduced mean rotational velocity of 19.5 m s21 in the

filled-in field.

We now indicate how the method is adapted to actual

Doppler radar data on a surface of constant elevation angle

ao. The natural boundary condition (where needed) is still

›V/›n 5 0. Since the grid is not Cartesian and the grid

spacing is different in the radial and azimuthal direc-

tions, the correct equation to apply in data voids is (4), not

=2V 5 0. At pink points where the data are missing, the

centered finite-difference version of (4) is used. At pink

boundary points with missing data, we once more employ

exterior yellow points to satisfy the natural boundary con-

dition. At green and white points where the data are good,

V is again set equal to its observed value. The maximum

principle still applies.

LetN be the total number of interior and boundary points

in the domain,M be the number of pink points at which data

are missing, and E be the number of needed exterior yellow

points. We now have a system of N 1 E simultaneous

equations in M 1 E unknowns. Note that N 2 M of these

equations apply to green and white points with good data;

they simply set the value of V there to the observed value.

A further M equations consist of the finite-difference form

of (4) applied at the M pink points where data are miss-

ing and filled-in values need to be found. The remaining

E equations equate V at exterior yellow points to V at

adjacent interior points to satisfy the natural boundary

condition (as in examples 5–7). We easily eliminate the E

quantities at the exterior points, thereby reducing the

system to N equations with N 2 M known values and M

unknowns.

The algorithm fills in all sized and shaped data voids in the

domain. It performs two minor preliminary steps to speed

up the algorithm. First, it searches for isolated pink points

and fills in values there [as done similarly in examples 1, 2, 5,

and 6 but using (4) instead of =2V 5 0]. Second, it does the

same for isolated pairs of adjacent pink points (as done

similarly in examples 3 and 4). After these steps, we have a

modified system of N equations with less unknowns. The

algorithm fills in the remaining data voids simultaneously by

numerically solving the modified system (as done similarly

in example 7).

4. Case studies

Our main interest in filling in data is for number

crunching in a tornado-warning algorithm. Dealing with

missing data (i.e., null values) is easiest done by filling in

values in a smooth, neutral, uncomplicated way. Our aim is

successful warnings, not best fits. In this regard we need to

quantify tornado threat with and without missing data. This

requires a measure of tornado threat that is quite robust to

missing data and not reliant on the presence or absence

FIG. 13. KOUNWSR-88D scans of (a) actual and (b) filled-in, ground-relative, meanDoppler velocityVr (m s21)

at launch angle of 0.978 for the El Reno tornado at 2311 UTC 31 May 2013. Black dotted curves are concentric

circles of radii r 5 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, and 4.0 km centered on white3, the estimated center of the TVS. The

height of the center is 1.17 km AGL.
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of a few data points. Scoring in the current TDA (Mitchell

et al. 1998, p. 360) is based on maximum gate-to-gate ve-

locity differences on surfaces of constant launch angle

(as well as some signature height and extent criteria).

Voiding a peak value on a surface has a large effect on

the score. A more suitable metric than the one used by the

TDA is Doppler circulation because it incorporates the

more abundant far-field data (DJ20), which is partly

missing at worst, instead of a localized TVS measure, for

which the data may be entirely missing. Large circulation is

the clue that there is an actual or potential tornado and

circulation values are very high for large devastating tor-

nadoes. Compared to circulation, gate-to-gate velocity

differences are more range dependent, more dependent on

tornado location within a grid cell, and more vulnerable to

missing data. For our narrow requirements, a successful

filling algorithm is one that retains most of the tornado

threat (high circulation value) even when a lot of the data is

missing.

A minor consideration is the filling of fields with ‘‘missing

pixels’’ to produce display images that are pleasing to the eye.

To this end, we have in a few examples randomly voided 20%

of the data, filled in the values by the variational algorithm, and

computed statistics for the differences between voided and

filled values.

As examples of the ‘‘data filling’’ algorithm, we present

analyzed actual Doppler velocity data of four tornadoes:

(i) the Union City, Oklahoma, tornado of 24 May 1973; (ii)

the El Reno, Oklahoma, tornado of 31 May 2013; (iii) the

Binger, Oklahoma, tornado of 22 May 1981; and (iv) the

Dodge City, Kansas, tornado of 24 May 2016. In some of

these cases, data were missing originally. In others, we

voided data either along radials or randomly.

As is the case with other algorithms (e.g., Mahalik

et al. 2019), we assume that actual reflectivity data have

been quality-controlled to eliminate the nonmeteorological

radar echoes such as biological returns, anomalous prop-

agation, instrument artifacts, and ground clutter (e.g.,

Lakshmanan et al. 2014) and that actual Doppler radial

velocity data presented in this study have been carefully

dealiased.

a. The Union City tornado of 24 May 1973

Doppler velocity data were collected by the Norman

Doppler radar in the surface of 3.88 launch angle at 1546

central standard time (CST) during the mature stage of the

violent tornado that struck Union City on 24 May 1973

(Lemon et al. 1978; Brown et al. 1978). This is presented in

B scan (range–azimuth format) in Fig. 6a for a larger do-

main than in Fig. 2. The algorithm replaces two missing

data (e.g., 999 in Fig. 6a) with filled-in Doppler velocity

values (2 and 5 m s21 in Fig. 6b). DJ20 computed Doppler

circulation values of 56.963 103 and 53.043 103 m2 s21 and

mean Doppler convergence values of 2.250 3 1023 s21 and

2.884 3 1023 s21 at the circle radii of 1.5 and 2.5 km, re-

spectively (yellow dotted circles). After doubling to com-

pensate for the unobserved wind components being set

to zero, the circulation value (21.1 3 105 m2 s21) at

3.5 km AGL agreed closely with the photogrammetrically

measured value near the ground. The results indicate that

the mature tornado was embedded in a region of nearly

uniform strong convergence (;5.5 3 1023 s21 after dou-

bling) that was about 6 km in diameter without a mesocy-

clone present at the time.

We artificially created missing data by voiding two con-

tiguous radials of data that pass through the extreme posi-

tive and negative Doppler velocity values in the significant

TVS region at 2928 and 2938 azimuths (Fig. 7a). This situa-

tion bears a resemblance to missing data extending radially

from the KOUN WSR-88D radar shown in Fig. 1e. The

deduced mean rotational velocity is now 16m s21 and the

filled-in Doppler velocity field resembles that of a conver-

gent mesocyclone signature instead of the TVS. Doppler

circulation values at the circle radii of 1.5 and 2.5 km, re-

spectively, are 55.43 3 103 and 51.98 3 103 m2 s21; Doppler

mean convergence values at the corresponding radii are

2.461 3 1023 and 3.017 3 1023 s21, respectively. Even

though we have eliminated the TVS, high values of circu-

lation and convergence still indicate a significant tornado

potential.

FIG. 14. (a) Doppler circulations and (b) Doppler areal con-

traction rates as a function of circle radius for the El Reno

tornado of 31 May 2013. The circles are centered on the

intersection of the TVS axis with the 0.978 surface of constant

launch angle. The red dots (blue pluses) are the values calcu-

lated from the actual (filled in) Doppler velocity field depicted

in Fig. 13a (Fig. 13b).
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We artificially voided two separate radials of missing data

at azimuth 2918 and 2948 (Fig. 8). These radials resemble the

situation in Fig. 1e. The rotational velocity is 28.5m s21 and the

signature is a TVS as in the original, actual data (Fig. 6).

Doppler circulation values at the circle radii of 1.5 and 2.5 km,

respectively, are 45.613 103 and 53.883 103 m2 s21; Doppler

mean convergence values at the corresponding radii, re-

spectively, are 2.487 3 1023 and 2.292 3 1023 s21 in good

agreement with the original values. The measures of a strong

convergent vortex remain high even when two radials are

missing.

Although the tornado threat is not masked when data

along two radials is filled variationally, this is no longer the

case when the number of adjacent, missing radials per gap is

large. As shown in Figs. 1e and 1f in another case, a non-

tornadic mesocyclone signature with an associated hook

echo, centered at an approximate 36-km range and 2628
azimuth, was heavily masked by 10 missing radials. The ra-

dials were caused by a processing error when the scanning

KOUN antenna ‘‘bumped’’ for a few azimuths (C. Kuster

2019, personal communication). These gaps are too large to

fill realistically.

b. The El Reno tornado of 31 May 2013

We now explore the statistical differences between origi-

nal and the filled-in fields utilizing a histogram and a lin-

ear regression model. Figure 9 presents KOUN WSR-88D

scans of ground-relative base Doppler velocity (Vr), base

reflectivity (Z) of and base spectrum width (sy) of the violent

El Reno tornado as collected with superresolution (0.58 azi-
muthal interval and 250-m range increment) at the 0.978
launch angle at 2311:04 UTC 31 May 2013. Tornadogenesis,

FIG. 15. As in Fig. 10, except that the black bins of voided data in (a) are along azimuths of 294.768
and 295.768 that pass through the Doppler velocity peaks of the vortex signature. The filled-in values

of Doppler velocity are shown in (b) and (d). Doppler velocity contours with intervals of 10 m s21 are

drawn in (d).
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tornado evolution, photogrammetric and polarimetric ana-

lyses, and aerial damage survey in the El Reno tornadic su-

percell have been extensively documented by Wakimoto

et al. (2015, 2016) and Bluestein et al. (2018, 2019). We

chose a large domain of original, good data in the a surface

(launch angle) of 0.978 bounded by slant-range circles r1 5
52 km and rI 5 62 km and azimuthal radials b1 5 290.758 and
bK 5 300.758, with the subscripts I 5 41 and K 5 21 (861

grid points).

Associated with the large tornado is a strong TVS em-

bedded in a strong convergent mesocyclone signature at

low altitudes (Fig. 9a). This Doppler velocity pattern bears

a resemblance to that at the low-altitude scan (0.58) from

the KTLX WSR-88D at 2314:52 UTC (see Fig. 2b of

Wakimoto et al. 2015, for example). The extreme positive

and negative Doppler velocity values of the TVS at a range

of 56.75 km, respectively, are 114 and 258 m s21, resulting

in a deduced mean rotational velocity of 36m s21. The ap-

proximate center azimuth of the TVS is 294.98—essentially

the same as the center of the reflectivity minimum, which

results from centrifuged radar targets (e.g., Dowell et al.

2005; Wood et al. 2009). The estimated center of the TVS

at 2311:04 UTC was very close to the tornado track at

2310:00 and 2312:08 UTC (see Figs. 1 and 7 of Wakimoto

et al. 2016).

At low altitudes, a significant gust front signature, as in-

dicated by a curved, zero Doppler velocity band (Fig. 9a), is

associated with a well-pronounced hook echo (Fig. 9b).

Spectrum widths (Fig. 9c) are high along the gust front and

around the TVS. These large values may indicate either

strong turbulence or strong winds. The flow near the tornado

can be smooth, owing to the rotation damping turbulence,

but still have considerable variability within a sampling

volume.

To create randomly black data voids (speckles) in the field

of good Doppler velocity data (Fig. 10a), we used f 5 0.2,

which signifies that the data has been randomly removed at

about 20% of the data points (169 out of 861). The resulting

Doppler velocity field is shown in Fig. 10a. We then filled in

the Doppler velocity field variationally using the natural

boundary condition as needed. This filled-in field is depicted

in Fig. 10b. Figure 10c presents actual minus filled-in Doppler

velocities at the grid points where data have been filled in.

Large (small) differences between actual and filled-in values

highlight regions where the actual data has a lot of low-

frequency (high frequency) variability. Figure 11 presents a

frequency histogram of these differences. The mean value of

the difference, 0.4 m s21, is insignificant. The standard devi-

ation and RMSE values (2.62 and 2.65m s21, respectively)

indicate that the differences between the voided and filled-in

data are generally small.

Linear regression (Fig. 12) has a R2 value of 0.99. Despite

the few outliers shown in Figs. 10 and 11, the algorithm

typically fills in data gaps well when 20% of the data is

randomly voided.

We calculated Doppler circulations and Doppler areal

contraction rates (approximately one-half the real values) for

the circles shown in Fig. 13 by the methods described in DJ20.

These are shown in Figs. 14a and 14b. Randomly voiding 20%

of the data and then filling in the missing data via the algorithm

has very little effect on the Doppler circulation and the areal

contraction rate.

Instead of randomly annulling data, we arbitrarily voided

two radials of missing data that pass through the peak

positive and negative Doppler velocity values of the TVS

(Fig. 15a) as a worst-case scenario. The filled-in Doppler

velocities, via the variational procedure, and the differ-

ences between the actual and filled-in Doppler velocity

values are shown in Figs. 15b, 15c, 16, and 17. Large velocity

differences occur near the inbound peak of the TVS along

the 294.768 azimuth at around 57 km range. These differ-

ences are associated with a small-scale band of damaging

winds on the rear side of the TVS. This local maximum in

the actual inbound velocity is naturally missing in the filled-

in field because the algorithm is designed to patch data

voids smoothly without manufacturing small-scale peaks.

Consequently, the patched data do not fit the actual data

along the 294.768 azimuth very well (Figs. 16a and 18a) with

the coefficient of determination R2 being only 0.8. As

FIG. 16. Radials of actual Doppler velocity (blue curve with3
markers), filled-in Doppler velocity (red dotted curve), and

Doppler velocity difference (green dotted curve) at azimuths

of (a) 294.768 and (b) 295.768 for the El Reno tornado of

31 May 2013.
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expected, the mean, standard deviation, and root-mean-

square of the differences are quite high in this situation

(Fig. 17). The variation of the Doppler velocity along the

295.768 azimuth through the outbound peak is smaller.

Consequently, the difference between voided and filled-in

values is smaller (Fig. 16b) and the correlation between

the two sets of Doppler velocities is higher (R2 5 0.98;

Fig. 18b).

c. The Binger tornado of 22 May 1981

We now present an example where data are missing

along the domain boundary as well as along a radial. Zrnić

et al. (1985) investigated automatic detection by the Norman

Doppler radar of strong azimuthal shears in association

with large intense tornadoes. Figure 19a is almost identical

to their Fig. 8, which displayed a B scan of mean Doppler

velocities of the Binger tornado of 22 May 1981. As seen in

Fig. 19a, there are many points with missing data on the

domain boundary where the natural boundary condition

(i.e., ›Vr/›n5 0) is needed as in examples 5–7 (Fig. 5).

These points include one corner boundary point as in ex-

ample 6. However, Zrnić et al. (1985) did not show the

radial of missing data at 281.208 azimuth between the 280.708
and 281.708 azimuths. At the closest point, the 281.208 azi-
muth is about 2 km to the rear of the TVS axis. Using the

variational procedure, we filled in data along this azimuth

and in some smaller data voids (Fig. 19b). Contours of the

patched field look reasonable with no obvious discontinuity

at 281.208.
From the patched Doppler velocity field (Fig. 19b), we

progressively computed Doppler circulations (about one-

half the actual circulations) of 0.703 105 to 1.483 105 m2 s21

around circles (Fig. 20) of 0.5 through 2.0 km radius, re-

spectively, centered on the TVS axis at a height of 1.3 km

AGL. These large circulations are consistent with the TVS’s

strong, measured mean rotational velocity (48 m s21). The

Doppler circulation decreases with decreasing circle radius,

indicating an intense mesocyclone, whose presence is not

masked by the filled in data. The corresponding measured

Doppler areal contraction rates (DJ20), 20.27 3 104 and

1.55 3 104 m2 s21 around of circles of 0.5 and 2.0 km radius,

are probably small as a result of a great deal of debris centri-

fuging masking convergent airflow (e.g., Dowell et al. 2005;

Wood et al. 2009).

d. The Dodge City tornado 8 of 24 May 2016

As a final example, we used Dodge City (DDC)WSR-88D

scans of ground-relative base Doppler velocity (Vr) and base

reflectivity (Z) of the Dodge City tornadic storm on 24 May

2016 (Wakimoto et al. 2018). The data were collected at

the 0.58 launch angle at 2345 UTC (Figs. 1a,b). At this

FIG. 18. As in Fig. 12, but for data along (a) 294.768 and

(b) 295.768 azimuths in the case of the El Reno tornado at

2311 UTC 31 May 2013.

FIG. 17. As in Fig. 11, but for combined data along (a) 294.768 and
(b) 295.768 azimuths shown in Fig. 16.
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time there was a dissipating EF0 tornado (#8 in Fig. 2 of

Wakimoto et al. 2018). Within the mesocyclone region, there

is a lot of missing data (Figs. 21a,b). The data could result in

mesocyclone detection failure. Forecasters would appreciate

any missing data being filled in, especially if the mesocyclone

was moving close to the radar in a populated area (C. Kuster

2020, personal communication). Such data quality issues

cause considerable problems for forecasters making tor-

nado warning decision. The variational procedure pro-

duces realistic-looking fields of filled-in Doppler velocity

and radar reflectivity, respectively (Figs. 21c,d).

Calculated Doppler circulations and Doppler areal expansion

rates for different sized circles in the 0.58 constant-launch-angle
surface are presented in Fig. 22. The filled-in data supplied by

the algorithm produce useful smooth radial profiles of Doppler

circulations and Doppler areal expansion rates. These profiles

indicated a strong mesocyclone in a wide updraft.

5. Conclusions and recommendations

We have presented a variational, gap-filling algorithm,

which minimizes the gradients of Doppler velocity. It fills in

FIG. 20. (a) NormanDoppler radar scan of filled-in, ground-relative, meanDoppler velocity (Vr, m s21) at launch

angle of 0.88 at 1909 CST (as in Fig. 19b). Black dotted curves are concentric circles of radii r 5 0.5, 0.75, 1.0, 1.25,

1.5, 1.75, 2.0, and 2.25 km centered on white3, the estimated center of Doppler velocity signatures. The height of

the center is 1.31 km AGL. (b) Doppler circulations as a function of circle radius for the Binger tornado of 22 May

1981 centered on the mesocyclone axis.

FIG. 19. (a) Actual, meanDoppler velocities (Vr, m s21) with black data voids and (b) filled-in Doppler velocities

(Vr, m s21) in theNormanDoppler radar data coverage at 0.88 launch angle of theBinger tornado at 1909–1910CST
22 May 1981. In (a), black rectangles represent missing Doppler velocity values that the algorithm has filled in (b).

The significant TVS center is at 70.8 km and 2838 from the radar and at the height of 1.31 km. (b) Contours of

the filled-in Doppler velocity field with a contour interval of 10m s21. Range and azimuth increments, respectively,

are 150m and 0.58. Doppler velocity scale is indicated at bottom. ND stands for no data (missing data); RF stands

for range folding.
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missing Doppler velocity data in data voids smoothly while

leaving good data unmodified. We used single-Doppler data

of four tornadoes to explore and assess the utility of the

variational procedure. In tests in which Doppler velocity

data are artificially voided, the algorithm performs well in

regions where the field varies smoothly, and, as expected for

any method, achieves poorly near artificially eliminated

singularities such as TVSs. The gap-filling algorithm is not a

data panacea (e.g., Trapp and Doswell 2000) because it is

unable to put back small-scale peaks (such as a TVS). On the

other hand, it is incapable of introducing a peak into the

data and so will not create a false TVS. Data voids, such as

two missing radials or 20% randomly distributed missing

data points, slightly affect far-field tornado warning pa-

rameters such as Doppler circulation without concealing

the threat.

Since our algorithm is stable and always converges to a

unique solution rapidly in actual time, in principle it can be

automated and incorporated in the NEXRAD system. An

automated method for depicting mesocyclone track positions

can be implemented in the MDA and TDA. Based on the

past track positions, a future track position at the beginning

of WSR-88D’s next volume scan can be estimated. The au-

tomated algorithm can define an estimated center position

before defining beginning and ending ranges and azimuths

of a domain (say, 10 km3 10 km). The algorithm then calls to

‘‘search’’ any missing data parameter entirely within the

domain. If missing data are detected, then the automated

algorithm calls the variational method to fill in data. If there

are no missing data within the domain, the variational algo-

rithm gets bypassed, and the automated MDA and TDA

continue.

FIG. 21. DDC WSR-88D scans at 0.58 launch angle and at ;2345 UTC of (a) actual, ground-relative,

mean Doppler velocity (Vr, m s21) field with black data voids and (b) actual radar reflectivity (Z, dBZ)

field with black data voids of the Dodge City tornadic storm on 24 May 2016. In (a) and (b), each

black rectangle represents a range gate of missing value that has been filled in via the algorithm in

(c) and (d).
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